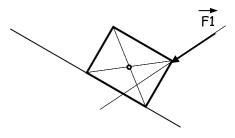

Alimentation du Minidosa en flacons

Mesure du coefficient d'adhérence:

Valeurs mesurées

Acier - bois	Acier - bronze	
Acier - acier	Acier – élastomère (gomme)	

Evaluation du système d'alimentation du Minidosa en bouchons.

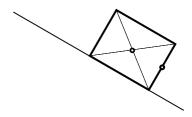

- coefficient d'adhérence entre bouchon et rampe (plastique acier):
- pourquoi la pente de la rampe d'alimentation en bouchon est correctement inclinée.
- Rapport entre pente réelle et pente minimum

Cas 1, un seul bouchon présent sur la rampe.

⊃ Effort à fournir par la lame ressort pour un seul bouchon sur la rampe.

Dynamique, échelle :

On isole le 1er bouchon



Cas 2, 20 bouchons présents sur la rampe.

Résultante d'action de contact entre 2 bouchons

Dynamique, échelle:

On isole le dernier bouchon

MINIDOSA

Formalisation

Alimentation du Minidosa en flacons

2/2

)	Résultante d'action de contact entre la lame ressort et le premier bouchon lorsque 20 bouchons sont placés sur la rampe.
	On isole le 1 ^{er} bouchon
	Dynamique, échelle :

Etude d'une nouvelle solution d'alimentation en flacons

- Mesure du coefficient d'adhérence entre verre et acier: f _{verre/acier} = _______
- Pente mini pour obtenir le glissement d'un objet en verre:
- Etude de l'équilibre d'un flacon

Conclusion