Retour à l'applet

Période d'un pendule simple

On considère un pendule simple de longueur L.

On écarte le pendule de l'angle θ_0 de sa position initiale et on le laisse osciller librement. On se limite aux mouvements de faible amplitudes dans un plan et <u>on néglige les frottements</u>.

L'énergie potentielle initiale est donc : Epi = $mgL(1 - cos\theta_0)$. L'énergie cinétique est nulle.

Quand l'angle de déviation vaut θ , l'énergie cinétique est :

$$Ec = \frac{1}{2}mL^2\dot{\theta}^2$$
 et l'énergie potentielle : $Ep = mgL(1 - cos\theta)$

En écrivant la conservation de l'énergie, on tire : $\dot{\theta} = \sqrt{\frac{2g}{L}(\cos\theta - \cos\theta_0)}$

$$\dot{\theta} = \frac{d\theta}{dt} \Rightarrow dt = \frac{d\theta}{\dot{\theta}} = \sqrt{\frac{L}{2g(\cos\theta - \cos\theta_0)}} d\theta$$

La période d'oscillation correspond au double de la durée pour aller de θ_0 à $-\theta_0$ L'expression de la période est donc :

$$T = 4\sqrt{\frac{L}{2g}} \int_{0}^{\theta_0} \frac{d\theta}{\sqrt{\cos\theta - \cos\theta_0}}$$

C'est une intégrale elliptique de première espèce.

Pour la mettre sous forme canonique, on effectue le changement de variable $\sin\theta/2 = \sin\theta_0/2.\sin\varphi$ qui modifie le domaine d'intégration de 0 à θ_0 en 0 à $\pi/2$.

On a
$$d\theta = \frac{2\sin\frac{\theta_0}{2}\cos\phi}{\sqrt{1-\sin^2\frac{\theta_0}{2}\sin^2\phi}}d\phi$$

De
$$\cos \theta = 1 - 2\sin^2 \frac{\theta}{2}$$
, on tire $\sqrt{\cos \theta - \cos \theta_0} = \sqrt{2}\sin \frac{\theta_0}{2}\cos \varphi$

L'expression de la période est donc :

$$T = 4\sqrt{\frac{L}{g}} \int_{0}^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1 - k^{2} \sin^{2} \phi}} \quad \text{avec} \quad k = \sin \frac{\theta_{0}}{2}$$

Pour k = 0 l'intégrale vaut $\pi/2$

On retrouve le fait que pour les petits angles la période du pendule simple est :

$$T = 2\pi \sqrt{\frac{L}{g}}$$